

LA-UR-21-24086

Approved for public release; distribution is unlimited.

Title: Pulsed Neutron Scattering Technique and Uncertainties

Author(s): Carver, Dale Travis

Intended for: invited lecture for NMT Materials undergraduate class

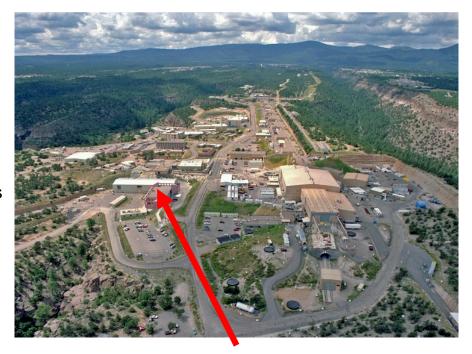
Issued: 2021-04-28

Pulsed Neutron Scattering Technique and Uncertainties

-D. Travis Carver

04/27/201

LA-UR



Disclaimers & Full Disclosure

I am employed by Los Alamos National Laboratory-

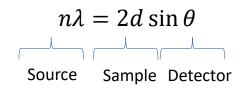
Material Science Division: Extreme Scattering Team

- Α. I support pulsed neutron material science beamlines
- I develop and deploy novel in-situ sample conditions B.
- I develop in-situ techniques at national light sources
- I seek to better understand the limitations of the instruments
- I want to raise awareness of my work to others

I work here

Agenda

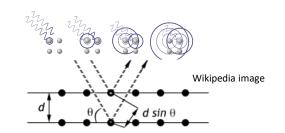
- Motivation and Background:
 - What is the "Pulsed Neutron Scattering Technique"
 - Relevance to Physical Metallurgy, Why we care, and why it's used
- Uncertainty Analysis: Peak analysis
 - Data and Peak fitting
 - Stochastic <u>uncertainty</u> vs Systematic <u>error</u> sources

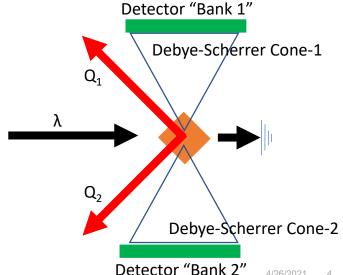

How do we Actually take non-destructive measures of d-spacing of bulk materials? -What is our "confidence" in our measurement

Note: Neutrons are the ONLY source for true bulk measurements Photon penetration depth: $^{\sim}Z^{1/3}$ {Of order mm for Actinide elements Electron probe depth: 275 μm

Proton scattering not used because it transmutates the nucleus

First: What are we talking about-> Bragg's Law

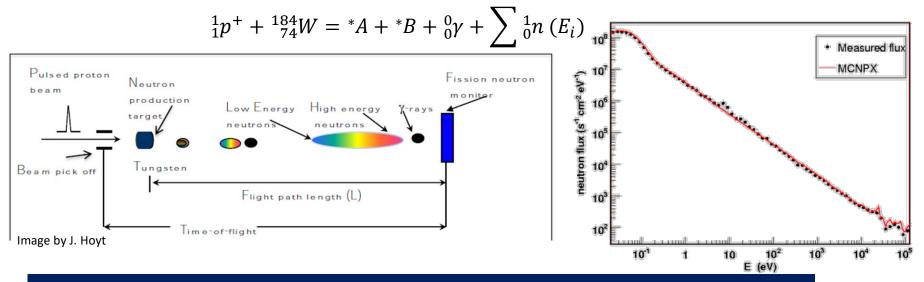

Second: With what? -> Neutrons


-Use the dual nature of matter: waves AND particles

$$\lambda = \frac{E}{c} = \frac{h}{\gamma m_0 v} = \frac{h}{m_0 v} \sqrt{1 - \frac{v^2}{c^2}}$$

But how do you really do it?

- -Samples are polycrystalline, bulk measurements
- -Fix scattering vector-Q₁&Q₂
- -Scan over Wavelength

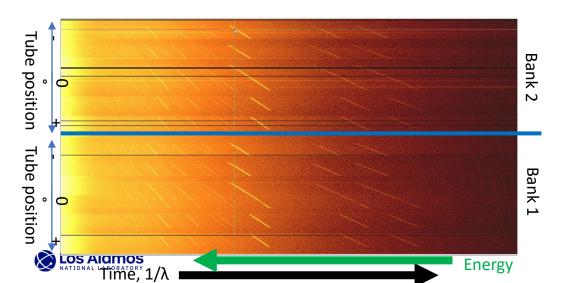


But you said Pulsed Neutrons...

-Neutrons are produced from a particle physics reaction:

Each Proton striking Tungsten spalls ~25 neutrons that emit over a range of Energies over 4*Pi (sphere)

- -Because these particles have Mass they travel at speeds LESS than light (borderline relativistic)
- -Thus High energy neutrons travel faster than lower energy neutrons
- -Wavelength is directly proportional to Energy


Why do we care? This isn't instrument Physics design

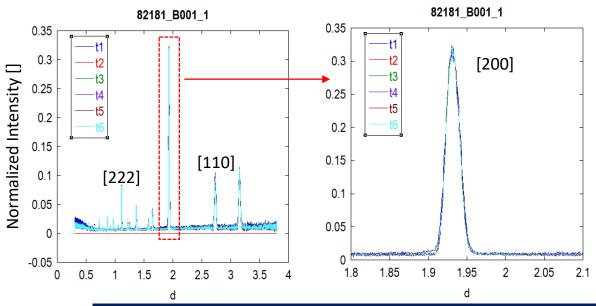
Because we study engineering material, polycrystalline, how does d-spacing change due to:

- Coefficient of Thermal Expansion
- Activated Slip systems under "Conditions"
- Mobility & diffusion mechanisms

(Yes, I'm glossing over things)

- **Residual Stress**: The unrealized deformation of the metal $\varepsilon_i = \frac{d_i d_0}{d_0}$ measured as strain
 - Stress from Hook's law $\sigma_i = \frac{E}{(1+v)(1-2v)} \Big((1-v)\varepsilon_i + v(\varepsilon_j + \varepsilon_k) \Big)$

Raw Data displayed from "Area" Detectors


-Banks 1 & 2

-"Area" Detectors are actually 192 He-3 tube

We are looking at the Debeye-Scherrer Cones over TIME (that equal wavelength) as it continually satisfies the Brag diffraction for those Energies/wavelengths

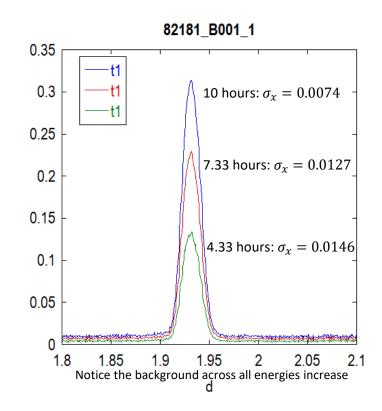
How do we quantify and apply uncertainty

- CaF2 is our d-spacing calibration sample
 - Cubic: a=3.9Å space group Fm3m
- We now assign and calibrate *Each Tube* to the known d-spacing

The canister also emits peaks

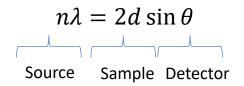
Now we can start to estimate uncertainty

Peaks give us additional information



Appling uncertainty statistics

- Lets start by assuming a normalized Gaussian Distribution*
 - $f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right]$
- Measure for different lengths of time
- Calculate FWHM [Full Width at Half Maximum]
 - $FWHM = 2\sqrt{2ln2}\sigma_x$
- Calculate Standard Error [estimate]
 - $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}} \approx \frac{\sigma_{\chi}}{\sqrt{n}}$

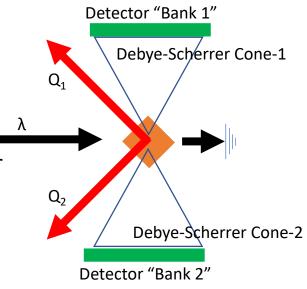

For well behaved peaks (or intense) this shows expected intensity growth and FWHM growth

Where does this come from?

Finally: Where does the Uncertainty and Error come from?

Peak Width is NOT strictly uncertainty and error

1) Error: Sample alignment


2) Error: Detector Bank

3) Uncertainty: Neutron Energy

4) Uncertainty: Inelastic Scattering

5) Uncertainty: Secondary Sample Scattering

6) Uncertainty: Air scatter

Conclusions and acknowledgments

- Neutron scattering (diffraction) is still a relevant choice in Metallurgy toolbox
- Uncertainties still less than most stated lattice parameters
- Unrealized strain (and therefore stress) can be mapped over the 'part' geometry

Assisted by Bjorn Clausen, Sven Vogel, Alexander Long

References

- Roger Pynn: "Neutron Production & Scattering Primer"
- G. L. Squires: "Introduction to the theory of Thermal Neutron Scattering"
- T. E. Mason et al., "The Spallation Neutron Source: A Powerful Tool for Materials Research,"

